Sistemas de Presión Constante Doméstico

Modelos: SPCBP-SXH1E0075, SPCBP-SXH1EO75, SPCBP-SXH1E100, SPCBP-SXH1E0100, SPCBP-SXH1E0150, SPCBP-SXH1E0200, SPCBP-SXH1E0300, SPCBP-3HE0100A, SPCBP-SX1ME050, SPCBP-SX1ME100, SPCBP-SX1ME0100, SPCBP-SX4ME0200

MANUAL DE PROPIETARIO

ANTES DE USAR SU EQUIPO LEA SU MANUAL DE PROPIETARIO

Le agradecemos su preferencia y esperamos seguir teniendo el gusto de servirle en el futuro.
Este manual contiene información importante para la instalación, operación y mantenimiento del mismo.
Es muy importante que se tome el tiempo para leerlos detenidamente antes de iniciar su instalación y guardarlos en un lugar seguro para referencias posteriores.

Atentamente
EVANS ${ }^{\circledR}$
INSTRUCCIONES

A
ESTE SÍMBOLO APARECE EN TODAS LAS INSTRUCCIONES DE SEGURIDAD PERSONAL Y DEL EQUIPO.

ESTE SÍMBOLO APARECE EN DONDE EXISTE RIESGO DE UNA DESCARGA ELÉCTRICA.
Este equipo no se destina para utilizarse por personas (incluyendo niños) cuyas capacidades físicas, sensoriales o mentales sea diferentes o este reducidas, o carezcan de experiencia o conocimiento, a menos que dichas personas reciban una supervisión o capacitación para el funcionamiento del equipo por una persona responsable de su seguridad.

EQUIPO HIDRONEUMATICO

NORMAS DE SEGURIDAD

ESTE TANQUE NO DEBE SER UTILIZADO PARA ALMACENAR LÍQUIDOS INFLAMABLES, CORROSIVOS O PELIGROSOS, ESTÁN DISEÑADOS ÚNICAMENTE PARA TRATAR CON AGUA LIMPIA. NO UTILICE ESTE TANQUE EN AMBIENTES EXPLOSIVOS O CERCA DE COMBUSTIBLES.

Para evitar posibles daños personales y/o materiales, no someta el tanque a una presión interna mayor a 1.034 MPa (150 PSI).

El sistema se calibra desde fábrica para operar las bombas en el punto de mayor eficiencia; dicho punto de mayor eficiencia lo puede consultar en las tablas de selección de nuestro catálogo digital en nuestra página web, en la división "Sistemas de bombeo", el cual puede encontrar en el siguiente enlace: http://www.evans.com.mx/

De necesitar una presión de operación diferente a la calibrada, deberá recalibrar la precarga de su tanque hidroneumático en vacio (sin agua) considerando $0.068 \mathrm{MPa}(10 \mathrm{PSI})$ por debajo de la presión de trabajo.

NORMAS DE SEGURIDAD:

Nunca permita que el motor de su motobomba se moje, ni esté expuesto a los rayos del sol, procure siempre tenerlo resguardado, ya que de lo contrario, podrían ocasionarse cortocircuito o un sobrecalentamiento de la bomba respectivamente.

Nunca bloquee las rejillas de ventilación de su motor, esto causará sobrecalentamiento. Procure instalar su equipo en un lugar lo suficientemente ventilado.

PREPARACIÓN PARA LA PUESTA EN MARCHA:

Para obtener un trabajo óptimo de su motobomba, ésta debe colocarse lo más cerca posible de la cisterna, tinaco u otro tipo de fuente de abastecimiento de agua, la altura de succión negativa, no debe ser mayor a 3 metros al espejo de agua (esta especificación varía de acuerdo al modelo de su motobomba, consulte la ficha técnica incluida en la documentación entregada en este manual sobre su motobomba).

Asegúrese que se instale el diámetro de tubería correcto para las características de conexión de su motobomba. Nunca utilice tubería de diámetro menor al de la descarga y succión, siempre utilice al menos de igual diámetro o mayor.

PRECAUCIÓN: El apriete de la tubería no debe exceder de $1 \frac{1}{2}$ vueltas más después del apriete a mano. El material recomendado para la instalación hidráulica es cobre ó PVC, en caso de utilizar tubería de acero, que ésta sea galvanizada de preferencia. Utilice el menor número de codos posible para maximizar la eficiencia de su motobomba. Nunca opere su motobomba con las válvulas de descarga ó succión cerradas.

Antes de arrancar por primera vez sus motobombas, éstas deberán ser cebadas (purgadas) para que puedan comenzar a bombear el agua. Su SCPC cuenta con la siguiente configuración en los ramales de descarga de cada bomba:

Para las instalaciones con succión negativa, el cebado de las bombas se realiza, retirando el tapón indicado como "Tapón de cebado" y vertiendo agua limpia dentro de la tubería; sabrá que está debidamente cebada cuando el nivel del agua en la entrada de agua para el cebado no disminuya.

Para las instalaciones con succión positiva, basta con retirar el tapón de purgado hasta que por acción de la gravedad, el agua comience a derramarse.

Nota importante: Su Sistema de Presión Constante Evans®, está diseñado para trabajar a un voltaje específico, por lo que a pesar de que el motor de su motobomba sea de voltaje dual, por ningún motivo deberá cambiar la configuración de la conexión de sus puntas para cambiar el voltaje de operación, ya que los controladores solo trabajan a un solo voltaje.

La codificación de los Variadores de Frecuencia Evans® ${ }^{\circledR}$, tienen la codificación acorde a las características expuestas en la siguiente tabla:

Modelo	Potencia	Acometida de suministro de energía eléctrica	Voltaje de salida a la bomba	Corriente de salida
EVANS-PLUS-1.0	1 HP	$110 \mathrm{~V} \sim \pm 15 \%, 1 \phi 60 \mathrm{~Hz}$	$110 \mathrm{~V}^{\sim} 1 \phi(30-60) \mathrm{Hz}$	11 A
EVANS-PRESS-1.0	1 HP	$220 \mathrm{~V} \sim \pm 15 \%, 1 \phi 60 \mathrm{~Hz}$	$220 \mathrm{~V} \sim 3 \phi(30-60) \mathrm{Hz}$	5 A
EVANS-PRESS-2.0	2 HP			8 A
EVANS-PRESS-3.0	3 HP			11 A

Los Variadores de Frecuencia Evans®, cuentan con una interfaz amigable, mediante la cual podremos programar el funcionamiento del mismo; compuesta por una pantalla, leds indicadores de estado y teclas de operación. El panel se muestra a continuación:

(1) Indicador bomba Principal.- Led encendido cuando la bomba esté en funcionamiento.

0 Indicadores bombas esclavas.- Led encendido cuando las bombas estén en funcionamiento.

3 Display.- Indica presión programada y real; Hertz; \% RPM; configuración de parámetros; situación de operación del controlador; errores, etc.

4 Feedback.- Indica la Presión real.
5 PROG / ESC.- Botón de programación. Permite acceso y salida del menú|

6 RUN / STOP.- Botón arranque y paro de la bomba. También ayuda a navegar rápido a través de los parámetros. Usando este botón parpadean diferentes digitos del Display. Por ejemplo para mover del 000 al 100 es necesario utilizar RUN/STOP hasta que parpadee el lugar de los centésimos, apretar 4.- Botón arriba (+) para que cambie a Indicador bomba Principal y DATA / ENT para aceptar.

7 DATA/ENT.- Botón de datos y guardar. Hace la función de guardar los parámetros programados. Cambia las diferentes pantallas Display como frecuencia, presión actual, etc.

8 V.- Botón abajo (-). Permite disminuir los valores de programación o ir al valor inferior, desciende la presión del Given.

9 4.- Botón arriba (+) Permite aumentar los valores de programación o ir al valor superior, asciende la presión del Given.

10 Given.- Indica la Presión programada.
11 Indicadores arranque y paro.- Led encendido de inicio o paro del equipo cuando está en funcionamiento.

PROGRAMACION EVANS PRESS

Atención: por ningún motivo accione los botones incluidos en la interfaz de los controladores con otros objetos como varillas, pedazos de madera, bolígrafos etc., siempre utilice su dedo para manipular dichos botones.

Descripción de los componentes del panel de programación y lectura de datos:

Pantalla: muestra la situación en que se encuentra operando el equipo, configuración de los parámetros y alerta acerca de las situaciones de falla.

En la pantalla se mostrarán los siguientes prefijos y el valor en las unidades de medida correspondientes:

H: Frecuencia de trabajo de la bomba
\mathbf{P} : Presión actual del sistema
L : Presión de trabajo programada. Nota: la presión de trabajo programada se podrá modificar desde este punto mediante las teclas de modificación de valores.

A : Corriente de salida a la bomba
D: Voltaje de corriente directa del BUS
U: Voltaje de salida a la bomba

LED's de estado:

Run : Indica que la bomba está operando, se apagará en cuanto la bomba alcance las 0 RPM

Stop: Indica que la bomba está detenida.
Fwd/Rev : Indica el sentido de giro del motor.
Trip: Indica la presencia de fallas en el sistema.
Hz: Indica que se está mostrando la frecuencia de trabajo de la bomba en la pantalla

A : Indica que se está mostrando la corriente de la bomba en la pantalla
\mathbf{V} : Indica el voltaje en corriente directa en el circuito de potencia de la tarjeta del controlador.

Hz y A : Indica que se está mostrando la presión del sistema en la pantalla.

Cuando se encuentran encendidos están mostrando la presión real.

Cuando se encuentran parpadeando, están mostrando la presión programada.

A y V : Indica que se está mostrando el porcentaje en la pantalla.

Teclas de operación:

Prg/Esc : Acceso al menú de programación y salida del mismo.

Data/Ent : Ingreso a menús / guarda el valor deseado en el parámetro.
: Botones para aumento y decremento de los valores a programar.
<< : Cambio de visualización de parámetros en pantalla primaria / corrimiento de dígito al programar hacia la izquierda.
>> : Cambio de visualización de parámetros en pantalla primaria / corrimiento de dígito al programar hacia la derecha.

Run : Inicia la operación del equipo
Stop/Reset : Paro de operación / restablecimiento en caso de error.

DIAGRAMA DE CONEXIONES PARA LOS VARIADORES DE FRECUENCIA EVANS®

Los variadores cuentan con las entradas y salidas habilitadas indicadas en el siguiente diagrama:

Durante la programación de sus Variadores de Frecuencia Evans ${ }^{\circledR}$, manejaremos 3 niveles de menús, a los cuales ingresaremos y grabaremos el valor deseado según se mencionó al principio de esta sección. Los niveles son descritos a continuación:

Nivel 1: Grupo de parámetros
Nivel 2: Código de función ó parámetro
Nivel 3: Ingreso del valor deseado

A continuación se presenta la tabla de programación, la cual describe las funciones que realizará el equipo de acuerdo al valor ingresado, estructurada como se mencionó anteriormente:

DIAGRAMA DE CONEXIÓN ELÉCTRICA

Conexión línea-variador, variador-bomba. *Instalar con interruptor termomagnético:
*** Todas las bombas deben de ir conectadas a tierras físicas en la instalación.

Diagrama de Instalación 1F / 1F 110V

EVANS PLUS

EVANS PRESS

CONEXIÓN BORNES MONOFÁSICO - TRIFÁSICO

El controlador de presión es libre de mantenimiento. ***Nota: Es muy importante seguir las instrucciones de instalación y las condiciones de uso del equipo.***

Matenimiento que se le debe dar al sistema depende de la bomba. Consulte el manual de la bomba correspondiente en el paquete de documentos o por internet en www.evans.com.mx

Aunque el controlador de presión genera ahorros en el matenimiento de la bomba, ya que se disminuye las revoluciones a las que trabaja en caso de que no se necesite que opere a su máxima capacidad, y lo protege contra variaciones de voltaje, trabajo en seco y sobre calentamiento, es necesario darle mantenimiento periódico a la bomba.

PROGRAMACION EVANS PLUS

Parámetro	Función	Rango de valores	Configuración de fabrica	Descripción
Grupo Br00				
b00.00	Contraseña de programación	(0-65535)	(65535)	Decida en b06.09, por defecto es 65535
b00.01	Presión deseada	(0.0-100.0 bar)	(3.0 bar)	Establecido de acuerdo a necesidades del usuario
b00.02	Sentido de giro del motor	(0-1)	(0)	0: Izquierda 1: derecha
b00.03	función anti congelado	(0-1) N	(0)	Use en áreas frías 0: invalido 1: valido
b00.04	Anti-atasco	(0-1)	(0)	Medida de prevención 0 : invalido 1: valido
b00.05	Anti-atasco ciclo de rotación	(1.0-300.0s)	(20.0 s)	Establezca el ciclo del sentido de giro Izquierda/Derecha
b00.06	Anti-atasco frecuencia de salida	(0.00-600.00 Hz)	$(15.00 \mathrm{~Hz}) \mathrm{J}$	correspondiente la salida de frecuencia
Parámetro	Función	Rango de valores	Configuración de fabrica	Descripción
Grupo Br01				
b01.00	Alta presión de agua/alarma de nivel	(0.0-100 bar)	(8.0 bar)	Cuando la presión es superior al valor predefinido, el controlador se detiene, alarma y pantalla (HP)
b01.01	Baja presión de agua/ alarma de nivel	(0.0~100 bar)	(0.5 bar)	Cuando la presión es inferior al valor predefinido para tiempo de arranque para baja presión, el
b01.02	Baja presión/ tiempo de arranque	(0~300 s)	(20 s)	controlador se detiene, alarma y en pantalla (LP)
b01.16	Reinicio después de encendido	(0~1)	(0)	0 : invalido 1: valido
b01.17	Tipo de control	(0~1)	(1)	0: síncrono esclavo \quad 1: maestro-
Parámetro	Función	Rango de valores	Configuración de fabrica	Descripción
Grupo Br04				
b04.00	Función de descanso	(0~1)	(1)	0 : invalido 1: valido
b04.01	Tiempo de espera de descanso	(0~300.0 s)	(0.5 s)	Tiempo de retardo, en segundos
b04.02	Prueba de descanso	(0~10.0\%)	(4.00\%)	Rango de frecuencia prueba de consumo de agua
b04.03	Variación de presión para despertar	(0~20.0 bar)	(0.5 bar)	Presión a la que despierta el controlador
b04.04	Variación de presión para dormir	(0~1.0 bar)	(0.5 bar)	La fluctuación de presión que permite el modo dormir
Parámetro	Función	Rango de valores	Configuración de fabrica	Descripción
Grupo Br05				
b05.00	Control de nivel de agua	(0~2)	(2)	Tipo de interruptor de nivel de agua

Para ingresar al grupo de parámetros br08, deberá primero ingresar al parámetro b07.15 e ingresar la contraseña de escritura 0000 o 65535.

Nota importante: Los Variadores de Frecuencia Evans ®, están pre-configurados para trabajar con una señal analógica de (4-20) mA, transmitida por el transductor de presión.

Este modo de operación resulta muy beneficioso, ya que al ser una señal de corriente la señal de retroalimentación, prácticamente es inmune al ruido de los motores, relevadores, interruptores y equipos industriales.

ESPECIFICACIONES TÉCNICAS

BOMBA	SPCBP-SXH1E0075	SPCBP-SXH1E075	SPCBP-SXH1E100	SPCBP-SXH1E0100	SPCBP-SXH1E0150	SPCBP-SXH1E0200
Tipo de Bomba	Multietapas	Multietapas	Multietapas	Multietapas	Multietapas	Multietapas
Código	SSXH15ME0075	SSXH15ME075	SSXH15ME100	SSXH25ME0100	SSXH25ME0150	SSXH45ME0200
Cuerpo	Acero inoxidable					
Tipo de impulsor	Cerrado	Cerrado	Cerrado	Cerrado	Cerrado	Cerrado
Sello mecánico	Buna / Cerámica / Acero Inoxidable	Buna / Cerámica / Acero Inoxidable	Buna / Cerámica / Acero Inoxidable	Buna / Cerámica / Acero Inoxidable	Buna / Cerámica / Acero Inoxidable	Buna / Cerámica / Acero Inoxidable
Sello del cuerpo	O-ring	O-ring	O-ring	O-ring	O-ring	O-ring
Temp. Máxima de operación	$40^{\circ} \mathrm{C}$					
Diámetro de succión	$2.54 \mathrm{~cm}\left(1{ }^{\prime \prime}\right)$ NPT	2.54 cm (1) ${ }^{\prime \prime}$ NPT	$2.54 \mathrm{~cm}\left(1{ }^{\prime \prime}\right)$ NPT	$3.17 \mathrm{~cm}\left(11 / 4^{\prime \prime}\right) \mathrm{NPT}$	$3.17 \mathrm{~cm}\left(11 / 4{ }^{\prime \prime}\right)$ NPT	$3.81 \mathrm{~cm}\left(11 / 2^{\prime \prime}\right) \mathrm{NPT}$
Diámetro de descarga	2.54 cm (1") NPT	$2.54 \mathrm{~cm}\left(1^{\prime \prime}\right) \mathrm{NPT}$	$2.54 \mathrm{~cm}\left(1^{\prime \prime}\right)$ NPT	2.54 cm (1") NPT	$2.54 \mathrm{~cm}\left(1^{\prime \prime}\right)$ NPT	$3.81 \mathrm{~cm} \mathrm{(1} \mathrm{1/2")} \mathrm{NPT}$
			MOTOR			
Tipo	Eléctrico	Eléctrico	Eléctrico	Eléctrico	Eléctrico	Eléctrico
Potencia	0.56 kW (0.75 HP)	0.56 kW (0.75 HP)	$0.746 \mathrm{~kW}(1 \mathrm{HP})$	$0.746 \mathrm{~kW}(1 \mathrm{HP}$)	1.1 kW (1.5) HP	1.49 kW (2 HP)
Voltaje	(220/440) V	(110/220) V	(110/220) V	(220/440) V	(220/440) V	(220/440) V
Velocidad RPM	3450	3450	3450	3450	3450	3450
Frecuencia	60 Hz					
Fases	3	1	1	3	3	3
VARIADOR DE FRECUENCIA						
Código	EVANS-PRESS-1.0	EVANS-PLUS-1.0	EVANS-PLUS-1.0	EVANS-PRESS-1.0	EVANS-PRESS-2.0	EVANS-PRESS-2.0
Potencia	1 HP	1 HP	1 HP	1 HP	2 HP	2 HP
Voltaje	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$	$110 \mathrm{~V} \mathrm{\sim}$ 60Hz 19	$110 \mathrm{~V} \mathrm{\sim} \sim 6 \mathrm{~Hz} \mathrm{1} \mathrm{\Phi}$	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$
TANQUE						
Tipo	Lineal	Lineal	Lineal	Lineal	Lineal	Lineal
Capacidad	3 L	3 L	3 L	3 L	3 L	3 L
Material	Lamina acero calibre 14					
Material del MAC	EPDM	EPDM	EPDM	EPDM	EPDM	EPDM
Tipo de descarga	Acero al carbón					
Presión máxima de operación	150 PSI					

BOMBA	SPCBP-SXH1E0300	SPCBP-3HE0100A	SPCBP-SX1ME050	SPCBP-SX1ME100	SPCBP-SX1ME0100	SPCBP-SX4ME0200
Tipo de Bomba	Multietapas	Residencial	Sumergible	Sumergible	Sumergible	Sumergible
Código	SSXH60ME0300	3HME0100A	SSX1ME050F2C	SSX4ME0150G-I	SSX1ME0100G	SSX4ME0200G-I
Cuerpo	Acero inoxidable	Hierro gris	Acero inoxidable	Acero inoxidable	Acero inoxidable	Acero inoxidable
Tipo de impulsor	Cerrado	Cerrado	Cerrado	Cerrado	Cerrado	Cerrado
Sello mecánico	Buna / Cerámica / Acero Inoxidable					
Sello del cuerpo	O-ring	O-ring	O-ring	O-ring	O-ring	O-ring
Temp. Máxima de operación	$40^{\circ} \mathrm{C}$					
Diámetro de succión	$3.81 \mathrm{~cm}\left(11 / 2^{\prime \prime}\right)$ NPT	3.17 cm (1 1/4") NPT				-
Diámetro de descarga	$3.81 \mathrm{~cm}\left(11 / 2^{\prime \prime}\right)$ NPT	$2.54 \mathrm{~cm}\left(1{ }^{\prime \prime}\right)$ NPT	$3.175 \mathrm{~cm}(11 / 4 \mathrm{Cl})$ NPT	$3.175 \mathrm{~cm}\left(11 / 4{ }^{\prime \prime}\right)$ NPT	$3.175 \mathrm{~cm}(11 / 4 ")$ NPT	$3.175 \mathrm{~cm}(11 / 4 ")$ NPT
MOTOR						
Tipo	Eléctrico	Eléctrico	Eléctrico	Eléctrico	Eléctrico	Eléctrico
Potencia	2.2 kW (1 HP)	0.746 kW (1 HP)	0.373 kW (1/2 HP)	0.746 kW (1 HP)	0.746 kW (1 HP)	1.49 kW (2 HP)
Voltaje	(220/440) V	(220/440) V	127 V	127 V	220 V	(220/440) V
Velocidad RPM	3450	3450	3450	3450	3450	3450
Frecuencia	60 Hz					
Fases	3	3	1	1	3	3
VARIADOR DE FRECUENCIA						
Código	EVANS-PRESS-3.0	EVANS-PRESS-1.0	EVANS-PLUS-1.0	EVANS-PLUS-1.0	EVANS-PRESS-1.0	EVANS-PRESS-2.0
Potencia	3 HP	1 HP	1 HP	1 HP	1 HP	2 HP
Voltaje	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1$ ¢	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} \mathrm{1} \mathrm{\Phi}$	$127 \mathrm{~V} \sim 60 \mathrm{~Hz}$	$127 \mathrm{~V} \sim 60 \mathrm{~Hz}$	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 3$ ¢	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 3$ ¢
TANQUE						
Tipo	Lineal	Lineal	Lineal	Lineal	Lineal	Lineal
Capacidad	3 L	3 L	24 L	24 L	24 L	24 L
Material	Lamina acero calibre 14					
Material del MAC	EPDM	EPDM	EPDM	EPDM	EPDM	EPDM
Tipo de descarga	Acero al carbón					
Presión máxima de operación	150 PSI					

Para evitar posibles fugas de agua en su equipo se recomienda que durante el ensamble utilice cemento para sellar la tubería o cinta de teflón en las roscas de cada uno de sus accesorios, así como en la tubería de abastecimiento y descarga.

Tipo de Instalación 1

* Nudo
\checkmark Llave de paso
- Válvula de alivio

■ Válvula check

- Válvula explusora de aire
\square Válvula de pie

Tipo de Instalación	1
Descripción	Instalación Nueva
Pros	*Instalación óptima. *Menor gasto de tubería (tuberías más cortas). *Nulo costo de mantenimiento. *Ocupa menor espacio. *No se necesitan construcciones extras. *Disminuye considerablemente el ruido.
Contras	*Aplica principalmente para inmuebles nuevos o donde se reinstale tubería nueva.
Notas	

Tipo de Instalación 2

$*$ Nudo
\checkmark Llave de paso
A Válvula de alivio

- Válvula check
- Válvula explusora de aire

Tipo de Instalación	2
Descripción	Remplazo de sistema de tinaco por sistema de presión constante a nivel del piso (reemplazo de la motobomba original)
Pros	*Tipo de instalación más recomendable para reemplazar sistemas de tinaco. *Fácil instalación en casas que ya tienen tinaco.
Contras	*Tuberías más largas. *Válvulas check adicionales (jarros de aire). *Válvulas de compuerta adicionales.
Notas	1. Si utiliza el tinaco, instalar una válvula check en la salida del tinaco. 2. Instalar una válvula expulsora de aire o
una válvula check invertida en el jarro de	
aire.	
IMPORTANTE: Si la tuberia tiene más de	
15 años de vida, limitar la presión a 20	
PSI	

Tipo de Instalación 3

\star Nudo
\checkmark Llave de paso

- Válvula de alivio
- Válvula check
- Válvula explusora de aire
\square Válvula de pie

Tipo de Instalación	3
Descripción	Sistema de tinaco con sistema de presión constante a nivel de piso con bomba sumergible.
Pros	*Tipo de instalación más recomendable para reemplazar sistemas de tinaco. *Fácil instalación en casas que ya tienen tinaco. *Ruido nulo de la motobomba.
Contras	*Tuberías más largas. *Válvulas check adicionales (jarros de aire). *Válvulas de compuerta adicionales.
Notas	1. Si utiliza el tinaco, instalar una válvula check en la salida del tinaco. 2. Instalar una válvula expulsora de aire o una válvula check invertida en el jarro de aire.
IMPORTANTE: Si la tubería tiene más de 15	
Iños de vida, limitar la presión a 20 PSI	

TABLA DE REFACCIONES

Display de	Descripción	Acciones Sugeridas
E04.D	Sobre Corriente Durante Aceleración	Verificar si el motor tiene corto circuito y si tiene buen nivel de aislamiento (que no le haya entrado agua al motor) Extender el tiempo de aceleración y desaceleración La selección del inversor no es la adecuada para la corriente de la bomba (incrementar capacidad del inversor o limitar la frecuencia de la bomba i.e. máx. 55 hz). Extender el tiempo de desaceleración. Mejorar la fuente de voltaje o instalar un regulador de voltaje antes del variador. Verificar que no haga falta una fase. Verificar si no hay cambios repentinos en la carga y si el voltaje es normal. Mejorar la fuente de voltaje o instalar un regulador de voltaje antes del variador. Verificar que el ventilador del variador no este bloqueado. Corroborar que el variador este instalado en un ambiente techado a temperatura menor a $40^{\circ} \mathrm{C}$ Corroborar que no sea menor la capacidad del inversor que la del motor en base a la corriente. El motor es muy pequeno. El motor se calienta y el aislamiento es malo. Verificar que no este faltando ninguna fase. Resetear parámetros (Ingresando la clave en F000 y despues ingresar 20 en el parámetro F-011) y programar correctamente. Verificar errores comunes como cambiar el sentido de giro de un motor monofásico, etc.
E04	Sobre Corriente Durante Operación a Velocidad Constante	
E02H/D	Sobre Corrie Paro	
E02.P/B	Sobre V	
$\begin{aligned} & \text { E01.P/B } \\ & \text { E01.H/D } \end{aligned}$		
E0H.P/B E07D	Sobre calentamiento del inversor	
E07.P	El inversor excede capacidad	
E08.D E08.P E08.B	capacidad	
E.OF	Error al programar parámetros	

E.1P	Detección Incorrecta de Presión	Checar que el transductor este conectado correctamente, que no este roto. Verificar que los parámetros esten normales. Verificar el parámetro F-006 y asegurar que la presión máx. del transductor sea la correcta.
E.2P	Alarma de Falta de Agua	Checar el agua de suministro
E.HP	Alarma de Alta Presión	Checar que la presión de "feedback" en la pantalla del controlador no sea mayor a la programada como valor de protección de alta presión.
E.LP	Alarma de Baja Presión	Checar que la presión de "feedback" en la pantalla del controlador no sea menor a la programada como valor de protección de baja presión.
E.LB	Alarma de bajo nivel de agua	Checar el agua de suministro
E.5P	Alarma de presión baja	Checar tuberias

DIAGNÓSTICO DE FALLAS EVANS PRESS

Problema	Posibles Razones	Posible Soluciones
El variador no descansa	Fuga	Cambiar tanque o membrana de tanque
	Hidroneumático con falla	b04.00=1 y ajustar b04.04
	Mala programación	Checar la precisión del transductor de presión
Despliega erroren la presión	Transductor este sucio.	Quitar y limpiar el transductor
	Error en parámetros	Checar parámetros b01.05 y b01.08
	Los cables del transductor son muy largos	Reducir el tamaño de cables del transductor
Siempre trabaja a la máx presión	Error en parámetros	b05.02 no debería ser 1
	Pequeña fuga en la red hidráulica.	Revise cuidadosamente la red hidráulica que no tenga fuga
	El flujo/presión de la bomba no es el suficiente para la instalación	Checar el transductor y la instalación.
Vibración en el sistema. Se estabiliza lento	Valor de PID inigualable	Checar parámetros de PD b02.03 yb02.04
	Valor de aceleración/ desaceleración muy reducido.	Checar parámetros de aceleración/ desaceleración b05.03 y b05.04
Código de Falla LP	Baja presión. El sistema no alcanza a llegar a la presión programada.	Checar la rotación correcta del motor, la instalación del transductor, el parámetro de presión b01.01
Código de falla HP	Alta presión.	Checar la conexión del transductor, checar que el parámetro b01.01 no sea demasiado chico.
Código de falla LL	Bajo nivel de agua	
Código de Falla E022	Falla del sensor	Checar que este bien conectado el transductor, que no haya corto circuito en el transductor, que este aterrizado y que el cable no sea muy largo. Se puede reemplazar fácilmente.
Código de falla E001	Checar conexión a fase U	Checar la instalación en general y que el variador este aterrizado PE.
Código de falla E002	Checar conexión a fase V	
Código de falla E003	Checar conexión a fase W	
Código de falla E004	Sobre corriente durante la aceleración	Incrementar el tiempo de aceleración, checar el suministro de enerǵa, seleccionar un controlador más grande, disminuir la frecuencia máxima de operación de la bomba a 55 Hz por ejemplo.
Código de falla E005	Sobre corriente durante la desaceleración	hcrementar el tiempo de desaceleración, checar el suministro de energía, seleccionar un controlador mas grande, disminuir la frecuencia máxima de operación de la bomba a 55 Hz por ejemplo.
Código de falla E006	Sobre corriente durante el trabajo constante de la bomba	Incrementar el tiempo de aceleración y desaceleración, checar el suministro de energía, seleccionar un controlador mas grande, disminuir la frecuencia máxima de operación de la bomba a 55 Hz por ejemplo.
Código de falla E007	Sobre voltaje durante la aceleración	Verificar el voltaje de entrada al controlador. Incrementar el tiempo de aceleración.
Código de falla E008	Sobre voltaje durante la desaceleración	Verificar el voltaje de entrada al controlador. Incrementar el tiempo de desaceleración.
Código de falla E009	Sobre voltaje durante el trabajo constante de la bomba	Verificar el voltaje de entrada al controlador.
Código de falla E011	Sobre carga del motor	Checar el suministro de energía. Seleccionar el motor adecuado para la potencia requerida por la bomba. Verificar que no lo esté revolucionando a más de 60 Hz
Código falla E012	Sobre carga del controlador	Incrementar el tiempo de aceleración. Checar el suministro de energía. Seleccionar un controlador más grande para esa aplicación.
Código de falla E013	Falla en fase de entrada	Checar el cableado de las fases de entrada al controlador.
Código de falla E014	(1) Falla en fase de salidas	Checar el cableado de las fases de salida del controlador a la bomba.
Código de falla $\mathbf{E 0 1 5}$ y E016	Sobre calentamiento del rectificador	Checar el cableado, reemplazar el ventilador del controlador, verificar que no haya obstrucciones en la ventilación, instalar una unidad de ventilación adicional extema al variador como un ventilador o abanico, disminuir la frecuencia máxima de operación.
$\begin{gathered} \hline \text { Código de falla } \mathbf{E 0 1 7} \mathbf{y} \\ \text { E018 } \\ \hline \end{gathered}$	Falla en la comunicación	Checar todas las conexiones e instalación eléctrica. Reestablecer parámetros y programar nuevamente.
Código de falla E019	Detección de falla en la corriente de suministro	Esperar o hablar con su proveedor de electricidad. Instalar un regulador de voltaje antes del variador.

POSIBLE FALLA
Tubería floja o mal sellada. (Verifique la tuerca unión o nudo).
Empaque de acoplamiento dañado, tornillos flojos o sello mecánico dañado. Conjunto de venturi, tobera y difusor

ACCIÓN CORRECTIVA
Utilice algún tipo de sellador (teflón, cemento, Pola, etc.) al hacer nuevamente las conexiones. Apriete a mano dando con llave 1 a $11 / 2$ vuelta.
Reponga las partes dañadas y apriete bien los tornillos, siendo cuidadoso de no barrerlos. Taller de servicio.

EL MOTOR NO ARRANCA

POSIBLE FALLA

Falso contacto en la instalación.
Verifique que todas las conexiones estén bien hechas.
En caso contrario vuélvalas a hacer y aislelas correctamente. (Verifique voltaje).
Reemplace los fusibles o re-establezca el interruptor. Asegúrese que el tamaño de los fusibles sea adecuado al consumo de corriente del motor. Revise la instalación para evitar un corto circuito.
Reemplácelo si está dañado o si es inapropiado para el amperaje de trabajo del motor.
Verifique que no haya objetos que impidan el movimiento del rotor, flecha e impulsor.
Revise que los baleros estén en buen estado y que no se dañe el reten. Acuda a un taller de servicio autorizado.

EL MOTOR PRENDE Y APAGA CONTINUAMENTE

POSIBLE FALLA
Bajo voltaje en la línea.
Rango muy pequeño en flotador de nivel o de switch de presión.
Exceso de aire en el tanque.
Aire en la tubería.
ACCIÓN CORRECTIVA
Verifique que el cable y el voltaje de alimentación sea el apropiado. Si es muy distante su toma de fuerza, instale un transformador de voltaje o acuda a la compañía de luz.
Ajuste su interruptor (de nivel o de presión) para que su motobomba prenda el menos número de veces posible aunque sea pro períodos más largos.
Saque el agua de su tanque y verifique la presión en vacío.
Purgue el sistema abriendo las llaves para liberar el aire. De preferencia la última llave del servicio. Instale una válvula expulsora de aire.

Membrana rota y/o diafragma roto.
Fuga de agua en la tubería.
Reemplace la membrana y/o el tanque.
Revise y selle cualquier tipo de fuga.
LA BOMBA NO SUMINISTRA AGUA (o suministra muy poca)

POSIBLE FALLA

La bomba no esta cebada.
Entrada de aire en la succión.
Interior de bomba obstruido.
Válvula cerrada a (tubería obstruida en la línea de succión) la descarga.
Entrada de aire en la tubería de succión.
ACCIÓN CORRECTIVA
Llene su bomba y tubería de succión de agua, utilizando el orificio hecho para este propósito. Cheque su pichancha que no esté atorada o dañada.
Cheque la tubería, unión o nudo.
Cheque el Venturi y la Tobera del interior de la misma ya sea de su motobomba
jet o de su Equipo Hidroneumático. Solo personal calificado (acuda a un taller de servicio autorizado).
Abra las válvulas que impidan el flujo del agua y limpie o reemplace las tuberías obstruidas.
Verifique que la tubería y las conexiones estén en buen estado.
Use algún tipo de sellador en las conexiones.
Acerque su bomba lo más posible al espejo de agua, sin exponerla a que
eventualmente se moje. Verifique que su bomba sea la adecuada para su servicio.
Reemplace la tubería desgastada o inapropiada por tubería nueva o de mayor diámetro.
Destape el impulsor y ponga una coladera o un cedazo en la succión si es necesario. (En las bombas que no sean autocebantes no quiete la pichancha). Limpie el venturi y la tobera del interior de la misma bomba jet.
Una pichancha de mala calidad causa fugas de agua y hace que se pierda la carga.

POSIBLE FALLA

Válvula de succión cerrada, pichancha atascada; o entra aire por la tubería o cavitación.

Impulsor rozando en el difusor si es bomba jet o en cuerpo de la bomba si es centrifuga.
Baleros dañados.

POSIBLE FALLA

Switch de presión mal calibrado o en mal estado o contactos soldados por sobrecarga.

Pichancha obstruyendo la succión.
La bomba no apaga.

ACCIÓN CORRECTIVA

Abra la válvula o quite cualquier cosa que impida que el agua fluya fácilmente por la succión. El agua debe ser fría no caliente.
La tubería de succión está enroscada más de lo debido, puede rozar el impulsor.
Aflójela y después utilice sellador de conexiones y enrósquela sólo hasta donde lo permita. En la jet revise el conjunto, tobera, venturi y difusor.
Reemplace los baleros dañados. Taller de servicio.

LA MOTOBOMBA NO PARA

Revise que el switch esté debidamente calibrado, limpie las terminales
bloqueadas u obstruidas, y calibre su tanque en vacío a la presión requerida.
Reemplácelo si está mal.
Revise la pichancha (le recomendamos utilizar una pichancha de resortes.) Verifique la presión del tanque en vació y recalibre el switch de presión.

REGISTRO DE MANTENIMIENTO

FECHA	ACTIVIDAD

Innovación en Soluciones para Agua, Aire y Energía

Fabricado y/o distribuido por: Consorcio Valsi, S.A. de C.V. Camino a Cóndor No.401, El Castillo, C.P. 45680 , Tel. (52) 333•208•7400, RFC: CVA991008945 El Salto, Jalisco, México.

Sucursales Nacionales

CDMX

Tel. 555•566•4314 | 555•705•6779 | 555•705•1846
GUADALAJARA, JAL.
Av. Gobernador Curiel No. 1777
Col. Ferrocarril C.P. 44440
Tel. 333•668•2500 | 333•668•2551
ventas@evans.com.mx
Exportaciones: 333•668•2560 | 333•668•2557
exportaciones@evans.com.mx
www.valsi.com.mx

SERVICIO Y REFACCIONES

Tel. 333•668•2500 | 333•668•2572 | 333•668•2576

MONTERREY, N.L.

Tel. 818•351•6912 | 818•351•8478|818•331•9078| 818-331•5687

CULIACÁN, SIN.
Tel. 667•146•9329, 30, 31, 32 | 667•146•9329
PUEBLA, PUE.
Tel. 222•240•1798 | 222•240•1962 | 222•237•8975
MÉRIDA, YUC.
Tel. 999•212•0955 | 999•212•0956
TORREÓN, COAH.
Tel. 871•793•8774
QUERÉTARO, QRO.
Tel. 442•217•0601

Sucursales en Latinoamerica

COLOMBIA

CENTRO DE LOGÍSTICA Y DISTRIBUCIÓN
Vía Cali-Yumbo Km. 6 Bodega Vitrina 1 Tipo D Movil. (316) 693•3889

Bogotá

CII. 17 No. 27-67 Paloquemao tiendabogota@evans.com.co Tel. (571) 752•0538 | 752•0573

Cali - Valle del Cauca
Av. 3 Norte No. 40-07
tiendacali@evans.com.co
Tel. (572) 888•1082 | 888•1091

Barranquilla - Atlántico

CII. 57 No. 45-07 Esquina tiendabarranquilla@evans.com.co Tel. (575) 370•4880 | 379•6868

Medellín - Antioquia

CII. 40 No. 48-52
tiendamedellin@evans.com.co
Tel. (574) 448•6019 | 232•0423

Bucaramanga - Santander

Carrera 15 No. 24-24
tiendabucaramanga@evans.com.co
Tel. (577) 634•3466 | 634•3403

VENTAS EN LÍNEA
PBX (1) 3225032

